The Mathematics of Errors presents an original, rigorous and systematic approach to the calculus of errors, targeted at both the engineer and the mathematician.
Starting from Gauss's original point of view, the book begins as an introduction suitable for graduate students, leading to recent developments in stochastic analysis and Malliavin calculus, including contributions by the author. Later chapters, aimed at a more mature audience, require some familiarity with stochastic calculus and Dirichlet forms. Sensitivity analysis, in particular, plays an important role in the book. Detailed applications in a range of fields, such as engineering, robotics, statistics, financial mathematics, climate science, or quantum mechanics are discussed through concrete examples. Throughout the book, error analysis is presented in a progressive manner, motivated by examples and appealing to the reader's intuition.
By formalizing the intuitive concept of error and richly illustrating its scope for application, this book provides readers with a blueprint to apply advanced mathematics in practical settings. As such, it will be of immediate interest to engineers and scientists, whilst providing mathematicians with an original presentation.Nicolas Bouleau has directed the mathematics center of the Ecole des Ponts ParisTech for more than ten years. He is known for his theory of error propagation in complex models. After a degree in engineering and architecture, he decided to pursue a career in mathematics under the influence of Laurent Schwartz. He has also written on the production of knowledge, sustainable economics and mathematical models in finance. Nicolas Bouleau is a recipient of the Prix Montyon from the French Academy of Sciences.
A simplified approach to Malliavin calculus adapted to Poisson random measures is developed and applied in this book. Called the "lent particle method" it is based on perturbation of the position of particles. Poisson random measures describe phenomena involving random jumps (for instance in mathematical finance) or the random distribution of particles (as in statistical physics). Thanks to the theory of Dirichlet forms, the authors develop a mathematical tool for a quite general class of random Poisson measures and significantly simplify computations of Malliavin matrices of Poisson functionals. The method gives rise to a new explicit calculus that they illustrate on various examples: it consists in adding a particle and then removing it after computing the gradient. Using this method, one can establish absolute continuity of Poisson functionals such as Lévy areas, solutions of SDEs driven by Poisson measure and, by iteration, obtain regularity of laws. The authors also give applications to error calculus theory. This book will be of interest to researchers and graduate students in the fields of stochastic analysis and finance, and in the domain of statistical physics. Professors preparing courses on these topics will also find it useful. The prerequisite is a knowledge of probability theory.